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Energy requirements for datacenters are growing at a fast pace. Existing
techniques for making datacenters efficient focus on hardware. However,
the gain in energy efficiency that can be achieved without making the
applications energy-aware is limited. To overcome this limitation, recent
work has proposed making the software running in datacenters energy
aware. To do so, we must be able to track energy consumption at various
granularities at the software level – (i) process level; (ii) application level;
(iii) end-to-end request level.

Currently, existing software energy-tracking techniques primarily focus
on tracking energy at the process or application level; only a few techniques
track energy at an end-to-end request level. However, not tracking energy
at an end-to-end request level can lead to false software optimizations and
cause a decrease in energy efficiency.

To track energy at an end-to-end request level, we can leverage end-
to-end tracking techniques for other metrics such as distributed tracing.
However, we posit that energy cannot be treated as just another metric
and that we cannot use existing frameworks without modifications. In this
paper, we discuss how energy is different from other metrics and describe
an energy-tracking workflow that leverages these differences and tracing
techniques in order to track energy consumption of end-to-end requests.

CCS Concepts: • Networks → Cloud computing.

Additional Key Words and Phrases: observability, distributed tracing, energy
measurement

1 INTRODUCTION
Datacenters deployed by cloud providers are responsible for 1%
of the world’s total energy consumption [42, 63]. The energy re-
quirements of the cloud are growing unsustainably, with estimates
showing that cloud computing may require 8% of the world’s energy
by the end of the current decade [63, 68]. To ensure that datacenters
and cloud computing do not waste energy, we must strive to make
datacenters as energy efficient as possible [2].

Researchers have come up with various techniques for increasing
energy efficiency in datacenters. These techniques include, but are
not limited to, using alternative energy sources for powering dat-
acenters [29, 49], smart cooling of datacenters [66], swarm-based
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dynamic workload placement [3, 22, 72], user-specified energy poli-
cies for datacenter resource allocation [10, 14], dynamically adapting
the energy consumption of a datacenter network [33], and switching
datacenter networks to multichannel lightwave networks [21].

However, the energy efficiency that can be achieved without con-
sidering application design is limited, and there have been calls to
make datacenter applications more energy-aware [2]. To do so, we
must be able to track the energy usage and energy provenance of
applications [2]. A key decision when tracking energy is deciding
the granularity of measurements. We can track energy at multi-
ple granularities – hardware, process, application, and end-to-end
request – with each granularity enabling finer-grained control of
energy usage.

Current techniques focus on energy at the granularity of a data-
center, hardware, process, or application (§3.2). However, we believe
that tracking energy of end-to-end requests is just as important. In
fact, as microservices and serverless architectures increase in popu-
larity, tracking energy of a single process (or even machine node)
in isolation is not useful. As a single request can visit thousands of
service components, focusing only on separate measurements can
be misleading. For example, if a service 𝐴 compresses the data to be
sent to service 𝐵, the network energy consumption for transferring
the data will be reduced. However, the processor might consume
more energy for compressing the data at 𝐴, leading to an increased
overall energy consumption [54]. Thus, without the full end-to-end
profile of a request, system designers might make incorrect deci-
sions when trying to mitigate energy inefficiency. Currently, to the
knowledge of the authors, there is no way of tracking energy at an
end-to-end request level.
To attribute the energy usage for a given request, it is essential

to track the request across different components of the applica-
tion and system stack, and to measure the energy spent processing
the request by each of these components. In principle we can use
distributed tracing frameworks which work at the end-to-end re-
quest granularity [76]; these tracing frameworks record traces of
the computations performed for a request by different parts of the
application across multiple machines [6, 26, 79].
However, we posit that energy cannot be treated as just an-

other metric and does not trivially integrate with distributed trac-
ing frameworks. We identify three factors that distinguish energy
from other typical metrics used today: (1) energy consumption
is all-encompassing, i.e., every aspect of a system from software
to hardware consumes energy; (2) the same computation running
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on different hardware, platforms, or environments, can vary sub-
stantially in its energy usage; (3) the motivation behind measuring
energy consumption is different, as it is neither performance nor
correctness driven; and (4) energy cannot be measured at extremely
fine granularities like, e.g., the performance counters of modern
systems.
Based on these differences, we consider how to track energy

consumption at the end-to-end request level, and how existing
coarse-grained energy-measurement techniques might integrate
with end-to-end distributed tracing frameworks. In this paper, we
first motivate the use of end-to-end request level energy tracking by
describing potential use cases for leveraging measurement of energy
consumption at the end-to-end request level (§2); then, we compare
and contrast the measurement of energy consumption with other
existing metrics (§3), propose a model for tracking energy at the
end-to-end request level (§4), and finally provide future directions
that would help improve energy measurement (§5).

2 END-TO-END MEASUREMENT USE CASES
We begin with several example use cases of how application devel-
opers might leverage end-to-end energy tracking.
Design Exploration. Changing the design and implementation
of an application can drastically impact its energy consumption [46].
There has been significant work investigating the effect of differ-
ent designs on the energy efficiency of applications. These tech-
niques analyze and optimize along various dimensions and at var-
ious levels in the software stack. Examples include the choice of
implementation language [67], the application’s memory usage pro-
file [36, 85], parallelizability of the application [83], usage and stor-
ing of data [53], thread management [70], implementation choices
for commonly used libraries [58, 71], use of compression [13], use of
software design patterns [52], and co-location of RPC services [35].

Several use cases require the ability to measure energy for small
blocks of code internal to the application, that may not directly map
to a specific thread, core, or process [30]. Consider the compression
example from §1; it is necessary to measure the energy consump-
tion of the compression logic to compare the application with and
without compression.
Energy Adaptive Computing. Metric measurements often feed
directly into control mechanisms at runtime, such as request sched-
uling, load-balancing, and data quality decisions. Energy is no differ-
ent, and numerous prior works use real-time energy measurements
to make energy-based tradeoffs at runtime [2, 4, 5, 9, 11, 12, 15,
27, 34, 45, 77, 87]. Similar to recent work examining the use of
machine learning models to service requests faster at the cost of ac-
curacy [31, 84], energy-adaptive computing can also make decisions
between accuracy and energy consumption.
In the context of web applications, we define energy-adaptive

computing as the ability of the application to choose different exe-
cution paths leading to potentially different outputs for the same
input based on the energy already used by a request. Under energy-
adaptive computing, every application component can decide what
computation should be performed for a request, in order to service
that request within a given energy budget. A hypothetical example
would be Google Search providing accurate results limited to the

first page of results, and not pre-computing results for the subse-
quent page unless explicitly asked, if a search request has already
used a large fraction of its energy budget. This specific use case
is viable because the click-through rate exponentially decreases as
the position of the result increases [8], leading to results on page
2 having a click-through rate lower than 7% [60, 69]. In a similar
vein, the Green framework reduced the energy consumption of Bing
Search by limiting the maximum number of documents that each
search query processed [5].
To be able to effectively control the energy usage of the applica-

tion at a per-request level to meet energy efficiency goals, developers
must have access to per-request energy consumption information
as well as an estimate of the total energy used by the application at
any given point in time during the execution of the request.
Dead Execution Elimination. Like a router dropping packets
when saturated, an application can immediately reject an incoming
request to minimize energy waste if a latency SLO dictates that
this request will be subsequently dropped. To maximize energy
efficiency, requests must be dropped as early as possible in the
execution pipeline.

Admission-control algorithms must accurately predict the energy
usage of an incoming request. To do so, they require energy to
be measured at an end-to-end request level in tandem with aggre-
gate energy-usage metrics at higher granularities. In fact, basing
admission-control decisions on high-granularity energy-usage met-
rics alone may either result in more requests being dropped than
necessary, leading to lower throughput, or fewer requests being
dropped, leading to energy waste.

The use cases described above have some underlying commonali-
ties. All use cases need energy tracking at the end-to-end request
level, whilst also potentially having access to hardware-level energy
measurements. Some use cases record measurements at runtime
for later offline analysis and modelling, correlating coarse-grained
measurements with fine-grained application traces; others use mea-
surements immediately for runtime decision-making and predic-
tion; while others use a combination of background modelling and
runtime decision-making. In all cases we face a similar challenge:
application-level and end-to-end request level energy usage is not
easily measured.

3 MEASURING ENERGY

3.1 How do we measure systems?
A possible approach to measuring energy at an end-to-end request
level is to simply apply existing techniques and frameworks de-
signed for other metrics. As mentioned in §1, metrics are useful for
a range of use cases and arise at different granularities, which we
describe here.
Application. Metrics at the application level focus on perfor-
mance data such as utilization, saturation, and failure signals. Per-
formance metrics give insight into how an application is running.
Common examples of performance metrics are latency, through-
put, and queuing time. Latency measurements (e.g., average latency,
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latency distribution, and jitter) are important for user-facing applica-
tions and are a common service-level objective (SLO) [43, 64, 73]. At
application level, throughput is measured as the number of requests
or operations completed by the application. Saturation metrics refer
to system backlogging, e.g., the length of queues. Failure signals
track the correctness behaviour of the application; an example is
the total number of API call exceptions [51].
Process. Metrics of interest at the process level include CPU uti-
lization, memory utilization, bytes transmitted and received, and
thread count. Data from these metrics can be analyzed to identify
any outlier process consuming too much memory or monopolizing
the CPU.
Request. End-to-end request level metrics [44, 56, 79] give a full-
system view and help gauge how a user is impacted (e.g., latency).
Most metrics at the request level provide elementary information
that is aggregated at higher granularities to help diagnose system
issues. At the request level, metrics are mostly produced rather than
consumed. For instance, the end-to-end request latency is recorded
at the request level, while other granularities, such as the application,
consume and aggregate individual request latency measurements
to report the average latency of the application.
Hardware. Metrics at the hardware granularity are parsed, aggre-
gated, and analyzed by coarser-grained metrics to solve a multitude
of software or hardware issues. For instance, network-level infor-
mation on link failures, packet drops, and flow helps to ensure
successful network operation [86]; spikes in CPU temperature are
used to explain reduction of clock speeds [23]; and, cache occupancy
is used to detect side-channel attacks [7].

3.2 How do we measure energy?

Energy Consumption Models. According to a recent survey
of energy-consumption modelling techniques [18], prior work pro-
poses several methods to model the energy at a datacenter level to
make datacenters more energy-efficient [1, 16, 41, 57, 61, 74, 75, 82].
For instance, there are estimation models to approximate the energy
usage of servers [48, 62] or of the entire datacenter network, to im-
prove the energy efficiency of the network [33, 50, 80]. Furthermore,
there are techniques modelling energy consumption as a function
of the resource usage of each application process [19], and others
requiring additional external hardware for measurements [24].
Energy Measurements. Measuring energy begins at the hard-
ware level before being aggregated or sliced at different granular-
ities. Modern Intel processors provide energy measurements for
servers through CPU registers that are updated approximately ev-
ery 1ms [39]. These counters provide numbers for CPU and memory
controller power consumption based on the Running Average Power
Limit (RAPL) [17]. RAPL measurements can then be further broken
down at the process and function levels.
Fine-Grained Measurements. Some libraries build upon Intel’s
RAPL measurements [39] to provide fine-grained process-level mea-
surements. For example, Scaphandre [37] provides process-level
metrics over large time periods sampled at 1s intervals [38]. How-
ever, RAPL registers need to be continuously polled for a higher

temporal resolution; this polling itself requires consumption of en-
ergy which distorts the reported energy information due to the
observer effect [81]. HAECER [30] uses RAPL to compute energy
consumption for short data paths, e.g., functions. HAECER requires
insertion of delay loops to synchronize the update rate of RAPL’s
counters.While promising, these approaches do not yet meet the low
latency demands of microservice applications that often have SLOs
on the order of milliseconds or microseconds. Other monitoring
tools model energy consumption for functions in a single machine
based on raw information available from hardware devices [65].

Power Containers [78] measure request-level power consumption
of, e.g., a webserver. Power Containers operate at an OS level by
using cheaper, high-frequency CPU, IO, and memory counters as
a proxy for calculating finer-grained energy consumption. The ap-
proach proposed by Power Containers is promising, but has limiting
assumptions about execution structure (e.g., no application-level
data dependencies across threads) that do not broadly apply in
modern RPC servers.
End-to-End Measurements. Prior work on distributed energy
measurement has primarily focused on embedded systems [25, 47].
For example, Quanto [25] requires an energy meter [20] to be at-
tached to every piece of hardware and provides task tracking across
different parts of hardware. However, Quanto is designed for em-
bedded systems that use a different, simplified programming model
and run on nodes with TinyOS [47]. By contrast, the hardware,
concurrency, and execution structure of datacenter applications are
significantly more complex.

3.3 How is energy different?

Energy consumption is all-encompassing. Energy consump-
tion is distributed across different system devices. Every single
system device contributes to the overall energy usage. For instance,
given the rising trends towards programmable devices (e.g., GPUs,
TPUs, programmable ASICs, programmable switches) to discuss
energy consumption we need to consider the energy consumption
of all of these devices. Currently, there is no unifying abstraction
that supports measuring energy from all devices in a usable way
at a request level. By contrast, other system metrics can simply be
measured end-to-end and do not require individual measurements
from each device in the system.
Energy consumption is dynamic. Many traditional metrics,
such as resource consumption (e.g., disk, CPU, network), depend
only on the application logic or state – the same application running
on different hardware or platforms will not vary significantly. By
contrast, energy consumption can vary significantly depending on
factors at all levels, from hardware to application: e.g., the specific
hardware; co-location with other applications [35]; physical prox-
imity of distributed components [35]; concurrent requests and tasks
within the application [70]; idleness of cores [28]; application-level
optimizations like batching and compression [54].
The motivation behind measuring energy is different. The
motivation for measuring energy consumption differs from the mo-
tivation for metrics in §3.1. In fact, most system metrics are used to
diagnose performance issues, maintain quality of service, or debug
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Fig. 1. GNN model training workflow for energy estimation

correctness issues. For instance, systems monitor the tail-latency of
requests in order to maintain a certain quality of service; through-
put numbers are collected to diagnose performance issues in an
application; error or crashes are recorded to identify bugs. Unlike
these metrics, energy measurement is neither performance nor cor-
rectness driven. Although energy measurement can be used for
aggregate analysis, energy measurement has found a very impor-
tant use in energy-adaptive applications that change behaviour
based on energy consumption data.
Hardware does not support fine-grained software-level mea-
surements. Unlike other metrics, commodity hardware does not
yet support energy tracking and measurement at fine-grained soft-
ware level granularities. For instance, Intel provides energy mea-
surements in servers via its RAPL interface. However, using RAPL
presents three main disadvantages: (i) the RAPL registers need to be
continuously polled, which consumes more energy; (ii) RAPL mea-
surements can only provide granularity up to 1ms [39, Vol.3,Ch.14];
(iii) RAPL might be subject to side-channel attacks [40]. An alter-
native to RAPL is to adopt specialized hardware that allows finer-
grained energy tracking. However, as accurate energy tracking must
cross process and machine level boundaries, we need solutions at
finer-grained software level granularities.

4 MODELING ENERGY CONSUMPTION OF
INDIVIDUAL REQUESTS

Since it is not feasible to directly measure the energy consumption
of individual requests, we believe that any energy tracking solution
would need to adopt a hybrid-measurement and model-based ap-
proach to estimate energy consumption. To support the use cases in
§2, we have to support energy modelling in both an offline mode
and an online mode. The offline mode should provide energy mea-
surements of a request for offline analysis. The online mode should
track the real-time energy usage of a request and predict the fu-
ture energy usage of that request at any point during the request
execution, while inducing minimal overhead.

4.1 Leveraging Distributed Tracing
As highlighted in §3.2, we cannot directly measure energy at a
fine-grained request level, but we can make estimates. Current ap-
proaches, such as Power Containers [78], model the energy usage of
a request for a single server based on CPU, IO, and memory counters.
These counters are then combined with coarser energy measure-
ments to attribute consumption to the tasks executing within a
time interval. In the distributed setting, Facebook has leveraged
distributed tracing to obtain CPU utilization information from each

node in the system for understanding the relationship between
power consumption and CPU utilization [28]. Each approach on its
own does not provide all the data needed to model energy consump-
tion at an end-to-end request level. However, by combining these
two approaches, we can obtain the relevant information for mod-
elling energy consumption. In particular, we leverage distributed
tracing for data collection in three ways – (i) Metric Collection, (ii)
API Profiling, and (iii) Data Correlation.
Metric Collection. First, we use distributed tracing to collect
fine-grained system information (e.g., the topology of services and
machines visited by a request, hardware configurations, execution
time, bytes to write to storage or send via network, and utilization
of CPU, GPU, and other accelerators). Then, we leverage such infor-
mation to compose machine learning (ML) features that are highly
correlated with energy consumption. To do so, we employ feature
engineering, namely the process of selecting and transforming data
into features for supervised ML. Feature engineering has proven to
be crucial in applying ML to optimize system behavior [32, 59].
API Profiling. For each request, we extract the list of APIs exe-
cuted by the request; for each API, we measure the energy consump-
tion locally, on each machine visited by the request, using Intel’s
RAPL registers. From these measurements, we derive a baseline for
the energy consumption of each API. Note that we are not using
the Intel RAPL register during production, but prior to production,
to get fine-grained isolated energy measurements.
Data Correlation. To generate meaningful predictions in pro-
duction, any model would need energy-usage measurements of
different parts of an end-to-end request. We leverage existing in-
frastructure for context propagation in distributed tracing [55] to
propagate general tracing metrics as well as energy measurements
between processes, in order to build a complete profile for each
request. Each profile consists of information on all the services vis-
ited by the request, plus the order and dependencies among these
services, which can be used to build an invocation timeline or a
service graph.

4.2 Design Concerns – Offline Mode
For the offline mode, we propose a Graph Neural Network (GNN)
model to better utilize the structural information in request traces;
this structural information reveals order and causality of the services
visited by the request, and can be used to detail communications
between these services and their energy consumption.

We use distributed tracing to build the service graph of a request,
then we train parametrized GNN functions on the graph. As shown
in Figure 1, we model energy consumption in four stages: (i) Graph
Creation; (ii) Graph Augmentation; (iii) Model Training; and (iv)
Model Usage.
Graph Creation. We use request traces to construct a service
graph where nodes represent the services visited by the request,
and edges represent communication between nodes.
Graph Augmentation. We annotate each node (service) with its
hardware configuration, additional metrics collected by the tracer,
and (local) energy measurements of each API exposed by that node.
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Furthermore, we annotate each edge with network device specifica-
tions, bandwidth, and bytes to be transmitted on that edge.
Model Training. We encode annotations into features to train
the GNN model via supervised learning. We train the model under
different system configuration scenarios, which we randomly gener-
ate from three configuration sets: service, workload, and hardware.
In particular, we randomly iterate over the sets to deploy the given
services, with the given hardware, under the given workload. Fi-
nally, we measure the end-to-end request energy consumption on
each service; as a reference, we use the energy usage measured from
motherboards. We validate the model in real production systems.
Model Usage. After a request execution, the GNNmodel estimates
the energy consumption of that request at every node and edge (of
the service graph) visited by the request.
Such a model would enable developers to identify energy usage

hotspots and improve the overall energy efficiency of applications. In
addition, estimating energy consumption under different hardware
configurations would help developers to deploy energy-efficient
configurations under different service and workload scenarios.

4.3 Design Concerns – Online Mode
For the online mode, we need a model that can quickly predict
current and future energy usage for an executing request. To this
end, we propose to deploy a simple predictor model at every node
of the system. Each predictor leverages the estimates of the offline
GNN model for recent requests in a given time window. These
predictions become part of the request’s baggage [55], which can be
used to make energy-aware decisions down the execution pipeline.
Generating Online Estimates. Each node in the service graph of
the GNNmodel tracks the node’s energy usage of each API for recent
requests. For each API, the node’s predictor computes an average
energy-usage estimate based on recent requests. Periodically, the
server running the GNN model communicates to each node the
estimated energy-usage information for that specific node, which
each node uses to update its local predictor model.
Measurement Carrier. Each note visited by the request uses its
local predictor to annotate that request and its (local) energy-usage
estimate. This annotation is propagated along with the request as
part of its context-specific baggage [55], which other components
can use to make energy-aware computation decisions.

5 FUTURE IMPLICATIONS
In some scenarios, dedicated meters have been attached to cer-
tain hardware to enable accurate real-time energy monitoring [20].
While hardware meters are not able to measure end-to-end request
energy consumption, their deployment can help the tracer to get
more accurate data.

Furthermore, to encourage application developers to treat energy
as a first-class citizen, cloud providers can shift towards energy-
consumption based pricing.
Finally, we can involve service customers: as more people are

committed to reduce carbon emissions, the energy consumption of
a request may be of increasing relevance to customers. We envision
services displaying to end users the energy-consumption estimates

of their requests, along the lines of flight booking services, which
annotate each flight option with their estimated carbon emissions to
encourage customers to make a more environment-friendly choice.
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