
Virtuoso: High Resource Utilization and 𝜇s-scale
Performance Isolation in a Shared Virtual Machine

TCP Network Stack
Matheus Stolet

Max Planck Institute for Software Systems

Saarbrücken, Germany

mstolet@mpi-sws.org

Liam Arzola

Max Planck Institute for Software Systems

Saarbrücken, Germany

larzola@mpi-sws.org

Simon Peter

University of Washington

Seattle, USA

simpeter@cs.washington.edu

Antoine Kaufmann

Max Planck Institute for Software Systems

Saarbrücken, Germany

antoinek@mpi-sws.org

Abstract
Virtualization improves resource efficiency and ensures secu-

rity and performance isolation for cloud applications. Today,

operators use a layered architecture with separate network

stack instances in each VM and container connected to a

virtual switch. Decoupling through layering reduces com-

plexity, but induces performance and resource overheads

at odds with increasing demands for network bandwidth,

connection scalability, and low latency.

We present Virtuoso, a new software network stack for

VMs and containers. Virtuoso re-organizes the network stack

to maximize CPU utilization, enforce isolation, and minimize

processing overheads. We maximize utilization by running

one elastically shared network stack instance on dedicated

cores; we enforce isolation by performing central and fine-

grained per-packet resource accounting and scheduling; we

reduce overheads by building a single-layer data path with

a one-shot fast-path incorporating all processing from the

TCP transport layer through network virtualization and vir-

tual switching. Virtuoso improves resource efficiency by up

to 82%, latencies by up to 58% compared to other virtual-

ized network stacks without sacrificing isolation, and keeps

processing overhead within 6.7% of unvirtualized stacks.

1 Introduction
The cloud leverages virtualization to improve resource uti-

lization while ensuring isolation for security and perfor-

mance. The hypervisor and operating system allocate and

manage the shared physical resources such as processor

cores, memory, and network links. For network communica-

tion, each VM and container runs a separate network stack

instance. VMs send packets from their OS stack through vir-

tual NICs to the hypervisor, while containers run in isolated

network name spaces also generating raw guest network

packets, then forwarded through a virtual interface to a cen-

tral kernel or userspace virtual bridge or switch. The operator

configures the virtual switch to implement network virtual-

ization, including tunneling, bandwidth limits, and security

checks, and pass packets to and from the physical network.

In this layered architecture, packets pass through a series

of different separate loosely-coupled components, such as

the guest transport layer, network layer, virtual NIC, virtual

switch. This layered architecture works well but incurs sig-

nificant performance and resource overheads. On one hand,

decoupling through layering simplifies development, con-

figuration, and management. Decomposition into separate

layers also enables partial performance isolation, as guest

stacks may be isolated by dedicating CPU cores to each guest.

On the other hand, demands for increasing network band-

widths and for low latency communication are expensive to

meet in this architecture. 100 Gbps links are commonplace

and 400 Gbps are already available. At the same time, modern

cloud applications demand 𝜇s-scale network latencies [57].

Coupled with the slow down of Moore’s Law, any wasted

CPU cycles due to network processing—incurred either due

to underutilized dedicated CPU resources or inefficiencies

in network stack processing—are particularly problematic.

In this paper, we argue that the existing layered virtual

network stack architecture unnecessarily sacrifices resource

efficiency and performance for isolation. Rising network

speeds increased the fraction of server CPU cycles consumed

by TCP packet processing: communication-intensive appli-

cations such as key-value stores may spend up to 48% of

per-CPU cycles in the TCP stack and NIC driver [27, 48].

The typical static CPU allocation for guests (VMs or con-

tainers) requires users to provision cores for peak traffic.

However, the more common off-peak periods incur poor

CPU utilization because of idle capacity allocated for net-

work processing. Recent data shows 84% of VMs have a peak

utilization of less than 20% [17]. Techniques, such as CPU

oversubscription, improve utilization but are uncommon in

clouds because of the difficulties in maintaining tenant SLOs

and performance isolation. Additionally, the layered architec-

ture for network virtualization and isolation adds significant

1

ar
X

iv
:2

30
9.

14
01

6v
3

 [
cs

.N
I]

 1
1

N
ov

 2
02

4

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

overhead to the datapath. The hypervisor individually medi-

ates every packet sent or received by the guest, increasing

CPU overhead and communication latency.

We argue that these overheads are not inherent to network

virtualization, but are an artifact of the existing architec-

ture. To that end, we propose a fundamental re-organization

of the full virtual network stack architecture. We present

Virtuoso, a new, shared software network stack for virtual

machines and containers that maximizes CPU utilization,

while minimizing processing overheads and enforcing isola-

tion. Virtuoso is drop-in compatible with sockets and TCP.

With its stack re-design, Virtuoso improves resource uti-

lization by sharing the stack, while providing fine-grained

per-packet CPU performance isolation. Virtuoso improves

resource efficiency by up to 82% and increases throughput

by up to 91% over optimized layered stacks, while still en-

suring 𝜇s-scale tail latency performance isolation. Virtuoso

also achieves high absolute throughput, incurring only a 14%

throughput penalty compared to state-of-the-art bare-metal

network stacks. Additionally, Virtuoso helps improve the

performance of small VMs (VMs that are not even allocated

a full core) by reducing VM exits, thus providing opportuni-

ties for cloud providers to improve networking performance

on oversubscribed machines.

The first Virtuoso key idea is to use only one network stack
instance in the hypervisor, shared by all guests. Sharing im-

proves CPU utilization for bursty workloads, as the shared

stack elastically allocates CPU resources just-in-time, rather

than statically provisioning CPU bandwidth for each guest’s

peak. To provide microsecond-scale performance isolation in

a shared network stack, we leverage fine-grained per-packet
resource scheduling. Virtuoso accounts CPU cycles and net-

work bandwidth used for each processed packet to the re-

spective guest resource budget, scheduling each guest on a

per-packet basis. These fine-grained mechanisms incur min-

imal performance overhead but enable 𝜇s-scale performance

isolation. Finally, a coalesced data path combines all virtual

network processing from transport down to virtual switch-

ing. The coalesced data path in Virtuoso collapses all layers

in the stack, minimizing processing overheads by avoiding

intermediate queuing, while implementing the same func-

tionality as conventional layered stacks. with considerably

fewer processor cycles. We further split the data path into a

fast- and a slow-path. Virtuoso processes common packets for

established connections on the fast-path in one-shot, reduc-
ing necessary state and simplifying performance isolation

through short, predictable code paths. Uncommon cases are

handled on the slow-path at a small performance penalty.

Our contributions are the following:

• The design of a new shared TCP network stack for vir-

tual environments that improves resource utilization and

leverages fine-grained scheduling for isolation.

• One-shot network virtualization fast-path incurring mini-

mal virtualization overhead.

• Virtuoso prototype implementation for Linux and QEMU.

• Performance analysis of Virtuoso prototype to quantify the

resource utilization improvement and overhead reduction,

and confirming performance isolation and low tail latency.

We will release Virtuoso as open-source software. This work

does not raise ethical issues.

2 Background
We now discuss the unique challenges for and approaches

to network communication in virtualized environments.

2.1 Network Virtualization Concepts
Virtualization aims to facilitate management and consoli-

dation of host and network resources. Multiple guest VMs

or containers with separate network addresses share a sin-

gle physical host, network controller, and link. Similarly,

multiple separate virtual networks share the same physical

network. Tenants expect to flexibly configure and use their

virtual infrastructure and infrastructure operators must mul-

tiplex the physical resources providing isolation to produce

the illusion of completely separate infrastructure to mutually

non-trusting tenants.

On the hosts this requires virtual switching, moving pack-

ets between the various guests and the shared physical net-

work in a controlled and safe way, and enforcing all neces-

sary processing for security and isolation. In the network,

virtualization requires tunneling protocols[15, 19, 50] to en-

capsulate packets, enabling use of separate protocols and

routing on the physical network. Virtual switching also as-

signs appropriate physical network addresses based on vir-

tual network addresses.

The complete network communication infrastructure aims

to meet the following operator goals: guests must not affect

the performance of other guests, idle resources should be

minimized, and packets must not be tampered. In addition,

there are two tenant goals: the networking stack must sup-

port 𝜇s scale latencies and high throughput.

2.2 Status Quo: Layered Silos
Traditionally, network virtualization is implemented as a

deeply layered architecture (Figure 1). Packet processing is

divided between independent network stacks in each guest

(managed by the tenant), multiplexed by the virtual switch

running as the lowest layer on the host (managed by the oper-

ator). Guests send and receive raw network packets through

their conventional OS network stack via the assigned virtual

NIC (vNIC) just as in a native deployment. Containers run in

separate network namespaces typically communicating with

the outside through veth pairs [29], while VMs run separate

OS instances and use virtual NICs such as virtio-net [52]

implemented by the hypervisor.

2

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

NIC

OS

vNIC

VM 1

App

Net Stack

VMM Virtual Switch

OS

VF Driver

App

Net Stack

VM 2

SR-IOV VF

Figure 1. Layered and independent virtualized stacks.

The virtual switch (vSwitch) takes packets sent on the

guests’ vNICs, routes and encapsulates them for the physical

network, and then sends them out through the host’s phys-

ical NIC. Receiving packets works symmetrically: packets

arrive on the physical NIC, the vSwitch inspects and decapsu-

lates them to determine the virtual network, and then looks

up and passes them to the corresponding vNIC. Alternatively,

some deployments leverage hardware SR-IOV [21] capabili-

ties to bypass the software switch layer of the virtualization

stack and increase performance, by assigning resources on

the NIC to the guest through virtual functions (VFs).

Advantages. Separately developed, maintained, and op-

erated virtual switches simplify implementation and enable

flexible deployment. Typically data centers run guest VMs

and containers on dedicated cores. Thus, independent per-

guest stacks effectively silo applications, minimizing inter-

VM performance interference. Much of the protocol process-

ing happens in the guest and is thus automatically accounted

for and isolated. Early demultiplexing also prevents priority

inversion for more complex scheduling policies, as packet

priorities are only known afterwards [38].

Disadvantages. On the other hand, independent network
stacks often over-provision resources. For the typically bursty

workloads, tenants have to provision VMs with enough re-

sources (especially cores) for peak bandwidth. While VMs

can share resources such as CPU cores, this is not compati-

ble with 𝜇s-scale latency requirements because of long and

expensive VM context switches. Cloud VMs, in particular,

typically exclusively provision processor cores, with only

exceptions for the smallest and cheapest instance types. VMs

typically only rarely operate at peak traffic, frequently leav-

ing resources underutilized.

Layered network stacks also incur overheads increasing

latency and wasting CPU cycles [27, 43]. Each layer adds in-

direction, often through queues or other data transfer mech-

anisms. For example, the TCP layer generates segments that

queue up lower in the stack because of vSwitch-enforced

bandwidth limits. Further, independent layers often redun-

dantly retrieve similar packet information [38] from different

data structures. Layered stacks also include significant pro-

cessing before multiplexing points that are not performance

isolated, e.g. in the vSwitch. This is a source of performance

cross-talk between guests and tail latency [51].

SR-IOV bypasses virtualization layers and reduces over-

head, but it also comes with drawbacks. Namely, SR-IOV is

not compatible with every network adapter or leads to under-

utilized resources because a portion of the NIC’s resources

are assigned to specific VMs. For example, the network virtu-

alization stack for Google Cloud skirts SR-IOV so that guests

do not have to cope with different physical NIC resources on

the target host during live migration[4]. SR-IOV also only

allows NIC resources to be multiplexed, but not the cores

used by a VM’s network stack for packet processing, thus for-

going sharing opportunities. For example, a shared network

stack exposed with application interfaces as the abstraction

boundary instead of a virtual NIC can improve utilization

and allows rapid and flexible deployment, thus accelerating

innovation in the cloud[58].

Summary. Layered stacks face two key challenges. First,

there is a trade-off between isolation and resource utiliza-
tion. Multiplexing resources early with independent stacks

facilitates isolation but fails to capitalize on finer-grained

resource-sharing opportunities because resources are siloed

from the start and cannot be pooled at lower levels. Second,

layering provides modularity but leads to overheads in packet

processing. These overheads are exacerbated by rising net-

work speeds, microsecond tail-latency requirements [5], and

the large scale of datacenter applications.

2.3 Prior Work
Prior work has investigated these challenges, but fails to

satisfy all goals. In particular, providing high resource uti-

lization and elasticity of CPU resources with minimal inter-

ference for 𝜇s-scale workloads remains a challenge.

Reducing layering overheads. A range of work seeks to

avoid layering overheads and reduce indirection in packet

processing in specific layers. These solutions span kernel by-

pass [3, 8, 25, 43, 57], kernel offload via eBPF [16, 46, 59], zero-

copymethods [3, 28, 32, 43], newNIC interfaces [9, 44, 47, 54],

and one-shot unlayered fast-paths [27, 48]. These approaches

do not completely solve performance overheads or isolation

across the virtualized stack. Most of these solutions focus

on streamlining the path between an application and the

NIC by reducing operating system overheads, but neglect

the additional layers necessary for network virtualization,

or suffer from low utilization and isolation issues due to the

lack of elasticity and performance isolation mechanisms.

Hardware offload. Offloading different parts of network

virtualization processing can significantly reduce overheads.

3

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

Virtuoso

VM 1

NIC

Slow-path

VMM

VM 2

VMM

OvS

Control
Path

Legacy
Path

App

Fast-path

App

OS OS Virtuoso
Agent

Data
Path

Figure 2. Fast-path manages TX and RX; slow-path han-

dles control operations. Legacy applications follow a layered

legacy path.

Recent data center NICs support offload for VXLAN, GEN-

EVE, and NVGRE [40] en/de-capsulation. Complete offload

of virtual switching fast-paths [11, 33, 41], and hypervisor by-

pass [2, 36], can reduce overheads further and enable direct

HW NIC access for guests through SR-IOV [2, 11]. How-

ever, these approaches rely on fixed hardware limited to

specific protocols and features [11], or themselves leverage

multi-core SmartNICs [2, 33, 41] and FPGAs [36], resulting

in another layered architecture with the challenges discussed

above. Hardware offload also gives rise to other performance

isolation challenges with shared hardware resources, such as

theNIC, PCIe interconnect, and IOMMU [1]. Finally, software

solutions are relevant because of their comparative flexibility

and simple deployability as evidenced by software network-

ing stacks deployed in large production scenarios [4, 30, 35].

3 Virtuoso Approach
Virtuoso (Figure 2) eliminates the tradeoff between resource

efficiency and isolation by sharing a network stack among

guests and implementing isolation in a single layer. The

shared stack allows Virtuoso to elastically pool resources and

increase utilization, while fine-grained resource accounting

and scheduling ensure performance isolation. Externalizing

network processing gives Virtuoso visibility into VM usage,

so that it can make informed scheduling decisions about

multiple VMs. Virtuoso uses a multi-threaded data fast-path

with dedicated cores for common case send and receive op-

erations, and a separate slow-path for data path exceptions

and control operations. The fast-path combines all network

virtualization and packet processing layers up to and includ-

ing the TCP transport layer, minimizing the path between

the guest application and the host NIC. The small units of

work in the fast-path enable Virtuoso to perform fine-grained

per packet scheduling efficiently. The fast-path implements

en-/de-capsulation and de-multiplexing, and combines all

common-case processing. Only the sockets interface remains

in the guest, but is tightly integrated with guest applications

in guest userspace through a dynamic link library.

3.1 Design Principles
Shared network stack for elastic resource utilization.

Instead of partitioning network processing to multiple guest

silos and the hypervisor, Virtuoso places one shared network

stack instance in the hypervisor. Externalizing network pro-

cessing allows guests to serve the same workload with fewer

cores; we instead re-allocate some of these cores for the

shared stack. This resource consolidation particularly im-

proves utilization for bursty workloads by being elastic; the

larger shared pool of cores can absorb bursts better than

multiple static per-guest pools [56]. Furthermore, a shared

network stack also improves deployment flexibility and al-

lows providers to offer more meaningful SLAs to tenants by

taking control over the stack [58].

Fine-grained per-packet scheduling for isolation. In-
stead of coarse-grained resource management via dedicated

cores to guests, we employ central and fine-grained resource

accounting and scheduling for individual packets to ensure

isolation in the shared network stack. Virtuoso precisely ac-

counts processor cycles and network bandwidth spent by

each packet to the respective guest resource budget. Vir-

tuoso leverages global visibility across all guests combined

with accurate resource accounting to implement fine-grained

per-packet scheduling that enforces tight isolation policies.

Scheduling is implemented centrally at a single layer in the

system, minimizing crosstalk [31, 51]. This nimble mech-

anism incurs minimal performance overhead but enables

performance isolation even for microsecond-scale latencies.

Single-layer data path. Instead of layered processing,

Virtuoso leverages a single-layer data path, coalescing all

network processing from the TCP transport layer down to

network virtualization and virtual switching, for receive and

transmit. Guest applications interact directly with the data

path through efficient shared memory queues, by linking a

dynamic link library in guest userspace that provides the TCP

sockets API. This allows Virtuoso to implement the same

functionality as conventional layered stacks considerably

faster and with fewer processor cycles by communicating

directly with the single-layer data path.

One-shot fast-path. We further streamline the Virtuoso

data path via a one-shot fast-path. For each TCP connection,

one-shot processing pre-computes rarely changing processing

state, such as guest and physical IP routing and tunnel state,

storing it in the fast-path, reducing per-packet processing

overhead for common packets of established connections.

Handling a limited number of common cases in the fast-

path also simplifies performance isolation through short and

predictable code paths. For example, when sending a TCP

4

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

{tun_id,vm_ip}

miss

Virtuoso

Slow-path

Fast-path

VM-N
SHM

...

VM-0
SHM

match

OvS

hit

Figure 3. The fast path routes packets to VMs with cached

state; the slow path fetches tunnel headers on cache misses.

segment from the guest on a virtual TCP connection, the fast-

path can directly create a physical packet with all relevant

virtualization headers and send it via the host NIC in a short

operation. Uncommon cases are handled on a separate slow-

path at a small performance penalty.

4 Detailed Virtuoso Design
In the Virtuoso network stack, a multi-core fast-path polls

guests for new packets and parses and generates headers

in a single layer for low-overhead packet transmission and

reception. The fast-path accesses each guest library’s shared

memory region and aggregates packets from multiple guests

into a batch to increase utilization. A separate slow-path core

handles control operations and exceptions. Dividing tasks

between a fast-path and a slow-path allows us to reduce over-

heads by streamlining the fast-path. For initialization of these

shared memory channels between applications and Virtuoso

during startup, we leverage a modified hypervisor for guests

and the host OS for containers. We describe these implemen-

tations later (§5.2, §5.3). After shared memory regions are

set up, there are no differences for the application-Virtuoso

data path between virtual machines and containers. Hence,

we refer to them collectively as guests.
In this section, we give detailed descriptions of the dif-

ferent components of Virtuoso. We start by describing how

we integrate efficient network virtualization in a multi-core

fast-path (§4.1). We then describe how we track each guest’s

resource usage on individual fast-path cores through a per-

guest budget (§4.2), followed by a discussion of how we use

this information to coordinate guest resource budget alloca-

tion across fast-path cores centrally through our slow-path

(§4.3). We then describe how we build fine-grained schedul-

ing based on the per-guest resource budgets (§4.4). Finally,

we describe how we protect the Virtuoso network stack on

the host when sharing it among guests (§4.5).

4.1 One-shot, Single-layer Transport
Single-layer transport. Virtuoso combines all processing

from the TCP transport layer all the way down to network

virtualization into a streamlined one-shot fast-path (Figure 3),

for send and receive. Separating out common case processing

in a minimal fast-path enables performance optimization,

while a separate slow-path ensures that less frequent cases

are handled. Regular data transfer packets for established

TCP connections exclusively use this optimized data path,

while packets for unknown connections or other protocols

pass through the slow-path. The slow-path sets up one-shot

fast-path state for for new connections so future packets

remain on the fast-path (Figure 3).

On receive, the fast-path parses the packet according to

the expected format, configured by default to TCP over IPv4

on the guest side, encapsulated in GRE [10] over IPv4, and

Ethernet on the physical network. The fast-path then lever-

ages the corresponding connection identifiers, TCP ports,

guest IPs, and tunnel ID to look up the consolidated flow

state. After validating the packet against the state, the fast-

path directly stores the TCP payload in the guest flow buffer

and enqueues a notification in the corresponding guest re-

ceive queue. Finally, if necessary, we reformat the packet

by swapping addresses and tweaking the TCP header into a

response TCP acknowledgement.

Similarly for transmit, once Virtuoso schedules a flow to

transmit a packet, the flow state directly provides all neces-

sary state to directly assemble the complete packet with all

headers for immediate transmission via the NIC. Headers are

divided between inner and outer headers. The inner TCP and

IP headers includes the source and destination IP address

and port on the guest (virtual) network. The outer headers

include the GRE encapsulation with the key field to identify

the network [7] wrapped by the outer UDP and IP header

and corresponding physical network source and destination

IP addresses and ports, finally wrapped by Ethernet and the

necessary peer MAC address. Virtuoso stores these key fields

in the consolidated flow state.

One-shot fast-path processing. We implement this pro-

cessing as straight-line codewithminimal control flow (other

than exceptions for rare cases) and no packet modifications

until acknowledgements [27]. Virtuoso processes packet in

one shot without intermediate queuing or access to complex

data structures other than the consolidated flow state. We

skip some steps for conventional network virtualization such

as decapsulation completely. Other steps we combine with

already necessary related steps previously in other layers,

such as combining the virtual switching table lookup with

the TCP flow state lookup.

Our state consolidation optimizations rely on most of this

state, such as guest routing, tunneling, host addressing and

routing, remaining typically unchanged over the life of a

connection. Thus it can be pre-computed and stored when a

new connection is established. This is related to other fast-

path caches for virtual switching state in systems such as

Open vSwitch [42]. Except Virtuoso explicitly and eagerly

manages this state, adding it, updating it, and removing it

as necessary instead of relying on misses and invalidations.

5

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

This also implies that changes to this state are more expen-

sive in Virtuoso than in other systems, as many changes to

individual connection state instances on the fast-path may

be required for an individual change to the underlying state.

Slow-path for remaining processing. TheVirtuoso slow-
path handles all packets not handled by the fast-path. This

includes packets that are not TCP data packets, TCP control

packets to open and close connections as well as non-TCP

packets. We leverage the existing Open vSwitch [42] in the

slow-path for network virtualization. Virtuoso sends trun-

cated headers to OvS, which asynchronously sends back the

packet with the necessary virtualization state. If the packet

belongs to a new TCP connection, Virtuoso combines the

received virtualization state with the necessary TCP state.

Non-TCP packets are forwarded to guests through legacy

interfaces (vNICs or veth) for processing in the legacy stack.

4.2 CPU Resource Accounting
Core-local resource accounting. The first step towards

isolation is to accurately account for resource use. Each fast-

path core tracks resources available to and used by individual

guests through a local budget table, storing each guest’s

resource budget on that core. The slow-path periodically

updates the fast-path value (§4.3) and replenishes credits

by performing an atomic add to the guest’s entry in the

budget table. This reduces the need for synchronization on

the fast-path and improves overall throughput by 4.3% at

scale.

Batch processing in three main tasks. The Virtuoso

fast-path performs threemain CPU-intensive tasks for guests:

receiving packets (RX), polling guest transmit queues (POLL),

and packet transmission (TX). RX dequeues incoming pack-

ets from the NIC, parses the packets, and implements the

necessary TCP processing before forwarding the payload to

the guest. POLL checks outgoing queues from guest appli-

cations to the fast-path for new transmission requests. TX

assembles complete network-virtualized TCP packets and

enqueues them in the NIC. For efficiency, these tasks execute

in batches, generally from multiple guests. The batch size

is a compile-time parameter and primarily depends on the

system’s cache hierarchy; we chose 16 empirically as the

value that yielded the highest throughput for our setup.

Lightweight accounting with TSCs. Virtuoso measures

CPU consumption by taking CPU time stamp counter (TSC)

readings at the start and end of processing for each batch.

Reading the TSC is lightweight and precise. Virtuoso breaks

down the TSC total to separate guests, based on each guest’s

number of packets. As per-packet processing costs are gen-

erally similar, this represents a reasonable trade-off between

overhead for accounting and accuracy, as we will show later

(§6.2, §6.3). Virtuoso then subtracts the cycles consumed

from the respective guest’s resource budget.

T
p
u
t
[
k
R
p
s
]

0

400

800

1200Victim

Aggressor

20 80 140

9
9
p
L
a
t
e
n
c
y
[
µ
s
]

Cap [mCycles]

0.6 1 1.4

Boost

100 500 900

0

200

400

600

Period [µs]

Figure 4. Guest VM performance with variable boost, bud-

get caps, and update periods, while an aggressor induces

interference.

4.3 Central Resource Allocation
A separate slow-path core periodically replenishes the per-

core budgets on the fast-path, leveraging its global view.

Separation into a parallel de-centralized fast-path and a cen-

tral slow-path enables scalable and efficient coordination

of the frequently accessed per-core budgets. The slow-path

replenishes the total budget in periodic 100 µs intervals and

distributes the new budget to each guest. The distribution

among guests is controlled by a guest weight𝑤𝑔 , configured

by the operator. By default each guest has the same weight.

We compute update credits 𝑒𝑔 for guest 𝑔 by recording the

timestamp 𝑡 ′ for the current update and the timestamp 𝑡 for

the previous update. The allocator scales the elapsed time

𝑡 ′ − 𝑡 by a constant boost 𝐵. 𝐵 compensates for any fast-path

CPU cycles not explicitly accounted to any guest by Virtuoso

to avoid over-committing processor cycles. We found the

fraction of accounted cycles to be 94% (and set 𝐵 = 0.94),

with minimal processing not related to specific guests. This

includes functions, such as scaling fast-path cores up and

down and checking if a core can block. We multiply the

product of the boost and elapsed cycles by the guests’s𝑤𝑔,

divided by the sum of the weights of all 𝑛 guests.

𝑒𝑔 =
𝐵(𝑡 ′ − 𝑡)𝑤𝑔∑𝑛

𝑖=1𝑤𝑘

(1)

Work-conserving allocator distributes more credits to
active cores. Our schedulers are work-conserving, so credits
are proportionately distributed based on activity. This pre-

vents a VM from being throttled when it runs out of budget

in a core, but has spare credits in other cores. For example, if

a guest only uses one fast-path core, our resource allocator

redistributes credits assigned to other cores in this round

to the active core. We redistribute credits by calculating the

sum of the used budget (𝑏𝑚𝑎𝑥 −𝑏𝑔𝑐) for all𝑚 cores and calcu-

late the ratio of a core’s unused budget to the total sum. We

multiply 𝑒𝑔 by this ratio. This compromise allows us to mini-

mize synchronization overhead by using per-core budgets,

6

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

Accounting

Fast-path
core 1

Fast-Path Core
1

POLL TX RX

Budgets
g-i: bi
g-z: bz

Fast-Path Core
1

POLL TX RX

Budgets
g-i: bi

g-n: bn

POLL TX RX

Budgets

g-i: bi
g-n: bn

NICVM N…VM 1

Slow-pathFast-path
Core 1

replenish
100 µs

Figure 5. Fast-path cores utilize a guest’s local budget for

processing tasks; all tasks measure resource consumption,

with the slow-path periodically replenishing budgets

while leveraging a global view of resource usage to update

local cores within 100 𝜇 periods.

𝑢𝑔𝑐 =
𝑒𝑔 (𝑏𝑚𝑎𝑥 − 𝑏𝑔𝑐)∑𝑚
𝑗=1 (𝑏𝑚𝑎𝑥 − 𝑏𝑔𝑗)

(2)

Preventing guest from accumulating budget. The op-
erator also configures a budget cap 𝐶 for all guests. Capping

the budget prevents guests from accumulating arbitrary bud-

gets during long periods of low utilization and starving other

guests in bursty periods of activity.𝐶 restricts the number of

CPU cycles Virtuoso can spend on behalf of a guest per fast-

path core between update periods. The slow-path calculates

the updated per-core budget 𝑏′𝑔𝑐 for guest 𝑔 on core 𝑐

𝑏′𝑔𝑐 = min {𝐶,𝑏𝑔𝑐 + 𝑢𝑔} (3)

Figure 4 shows how different boost, budget cap, and up-

date period parameters protect the performance of a guest

VM, while an aggressor VM introduces performance inter-

ference through background load. The aggressor creates a

load imbalance by using 9 cores to open a total of 900 con-

nections and the victim opens one connection in one core. If

the boost parameter is excessively high, the performance of

the guest is affected because the aggressor is not sufficiently

throttled: the aggressor budget is fully replenished to the

capped amount every round. Similarly, if it is too low, the vic-

tim suffers a small tail latency increase due to throttling. In

the experiment varying the budget cap, the aggressor bursts

every 250 ms for 250 ms. For large budget caps, the aggress-

sor affects the performance of the victim if it is allowed to

accumulate credits by remaining momentarily idle. Finally,

the experiment varying the update period granularity shows

that shorter update periods are helpful in maintaining low

tail-latencies in guests and are essential for microsecond

scale workloads.

4.4 Fine-grained Scheduling
Virtuoso performs fine-grained scheduling to enforce per-

formance isolation based on per-guest CPU cycle budgets

(Figure 5). The scheduler performs hierarchical scheduling,

first it chooses which guests to perform work for, and for

sending packets determines which of the guest’s flows get

to transmit next. On the fast-path, before starting a task on

behalf of a guest, the core consults the guest’s budget, and

if it is zero or negative moves on to do work for a different

guest.

Bounded fast-path simplifies scheduling. The obser-
vation at the center of our approach is that all individually

scheduled tasks are strictly bounded, on the order of 200–500

cycles depending on packet sizes. This provides us with two

key advantages. First, preemption is not necessary, as individ-
ual packet processing tasks complete very quickly. Second,

fine-grained batch scheduling and accurate accounting enable
low tail latency and isolation, even without knowing concrete
task lengths. Tasks are all similarly sized, and, after each task

completes, the next scheduling decision can compensate

based on the updated budget. Even if a task overruns the

budget, it will only be by a small amount of cycles and Vir-

tuoso still precisely accounts for this with negative budgets,

akin to deficit round-robin scheduling [49].

These two observations enable fine-grained scheduling for

low tail latency without preemption overhead in Virtuoso.

Conventional layered network stacks switch between guests

and require context switches, which disrupt CPU pipelines,

cause cache overheads, and demand expensive state saving

and restoration [20]. Virtuoso stores all necessary process-

ing state in the corresponding flow-state data structure, so

switching to processing a packet for a different guest incurs

minimal overhead, as it does not require any context switch.

Hierarchical scheduler controls guests and flows. Vir-
tuoso uses a two-level hierarchical scheduler. The first level

decides which guest should be serviced next and the second

level decides what flow (TX) or transmit queue (POLL) from

the selected guest should be scheduled, using different poli-

cies. This allows us to control resource allocation between

guests and between guest’s flows and transmit queues. For

RX, Virtuoso only performs resource accounting, as the spe-

cific guest is not known before initial processing of the pack-

ets, preventing scheduling. The following paragraphs dive

into detail on scheduling Virtuoso processing tasks.

Batch-scheduling POLL. Virtuoso polls guest queues

for new connection send requests. The fast-path polls each

guest transmit queue in a batched round-robin fashion to

balance efficiency and low tail latency. First, the fast-path

core selects the next guest and then starts polling the guest’s

transmit queues, until the batch is full, all the guest’s queues

are empty, or the guest resource budget is used up. If the

batch is not full, the scheduler moves on to the next guest.

Pulling multiple transmit requests from a queue in one

batch significantly reduces per-request overheads for queue

access. Consolidating tasks for a specific guest within a batch

also increases resource accounting accuracy as work from

fewer guests is aggregated into the same batch. But even

7

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

Algorithm 1 TX Scheduler

function schedule_vms(vms)

n← batch_size

for vm in vms do
if vm.budget > 0 and n > 0 then

x← schedule_flows(vm.flows, n)

n← n - x

function schedule_flows(flows, n)

i← 0

for flow in flows do
if i < n then

x← schedule_packets(flow.packets, n - i)

i← i + x

across guests, processing requests in batches enables Vir-

tuoso to improve efficiency by avoiding cache misses on

key memory accesses through group prefetching [26]. Dur-

ing the processing of these transmit requests, the Virtuoso

transport layer schedules the corresponding flows for packet

transmission through TX tasks.

Scheduling TX for per-guest fairness. Virtuoso also

schedules TX tasks with a similar batched hierarchical ap-

proach (Algorithm 1). The scheduler first chooses the next

guest, and then the guest’s next flow. In the first level of the

scheduler the round-robin algorithm decides which guest

should send next. The second level instead schedules flows

according to a priority queue that tracks the earliest time

when each flow should send next. The TCP processing logic

determines these timestamps with a split fast-path/slow-path

congestion control scheme [27]. These timestamps also au-

tomatically ensure that a guest’s flows are serviced fairly.

Guests without available budget are skipped until the budget

is replenished.

Drop packets for out of budget VMs in RX. RX pulls

packets from the NIC queues and performs a flow state

lookup to identify the destination VM of the packet. Virtuoso

drops the packet if it belongs to an out of budget VM. This is

necessary to prevent a misbehaving sender from overwhelm-

ing the receiver, causing the receiving VM to use more than

its fair share of resources. We found that latency can deterio-

rate by 2x if Virtuoso doesn’t drop packets, but by dropping

packets we keep performance interference at the same level

as siloed stacks (Figure 7). Per-VM hardware queues can

attenuate the number of packet drops, but the number of

queues increases with the number of VMs, causing a drop in

performance[34]. Alternatively, per-VM software queues are

used in systems such as PicNIC[30], but as reported in the

paper, they do not prevent drops of excess traffic and wasted

work.

The system is self-correcting when sender and receiver

enforce similar budget parameters, Virtuoso keeps track of

the cycle deficit accrued when later replenishing the budget.

Guests that deplete their budget on RX tasks as a result have

fewer cycles available for POLL and TX tasks, so senders

that do not receive replies will stop sending.

Round-robin packet scheduling on the slow-path. The
slow-path employs per-VM packet queues and does round-

robin scheduling among these queues to prevent starvation.

This avoids the slow-path from harming the tail-latency of

VMs when slow path requests are skewed towards only a few

VMs. For example, when the slow-path congestion control

algorithm calculates per-flow rates we have per-VM flow

queues, such that each VM is fairly serviced.

4.5 Secure Shared Stack
Virtuoso processes packets from multiple guests and appli-

cations in the same network stack. Resource accounting and

scheduling mechanisms provide performance isolation. For

this we rely on shared memory queues between individual

application cores and the fast-path, as well as a separate

slow-path for more expensive control operations, akin to

TAS [27] and SNAP [35]. However, we also need security

enforcement while enabling efficient direct communication

between applications and the Virtuoso stack.

Protecting memory regions. Virtuoso ensures security

isolation for the guest and application interface through

memory isolation. We allocate different guests’ queues and

connection buffers in separate shared memory regions only

mapped into a single guest and the fast-path. To avoid leaks

due to dynamic remapping and ensure resource isolation,

Virtuoso statically pre-allocates the complete sharedmemory

region when the guest starts. Virtuoso also has a narrow

shared memory interface comprising just guest receive and

send queues along with connection payload buffers. This

narrow interface provides no other attack vectors, such as

complex data structures that could interfere with Virtuoso.

5 Implementation
Virtuoso runs in host userspace as a separate service and pro-

vides all features of a typical TCP stack to guest applications.

Virtuoso maintains TCP protocol and sockets API drop-in

compatibility. For fast NIC access, we use DPDK [23]. We

build our prototype using TAS [27] as a basis. We heavily

modify and extend the TAS fast and slow-path, but retain

the sockets emulation library unmodified. Virtuoso supports

guest VMs as well as guest containers. The Virtuoso proto-

type comprises 20,918 lines total, 4,669 lines for the fast-path,

5,536 lines for the slow-path, 2,437 lines for the hypervisor

integration, and 1,029 lines of modification to OvS.

5.1 Support for Multiple Guests
We modify TAS to use separate shared memory regions on

the host and Unix sockets per guest. These regions contain

transmit request and receive notification queues, as well as

8

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

per-flow RX and TX circular payload buffers. During guest

initialization, Virtuoso passes a newly created shared mem-

ory region to the guest. As in TAS we implement this using

Unix domain sockets, that carry a handshake along with the

shared memory file descriptor. Unlike TAS, Virtuoso exposes

separate listening Unix sockets for each guest, allowing it

to securely identify which guest is connecting, assuming

sufficient access control on the host.

5.2 Virtuoso with Containers
Given that guest containers share the same host operating

system as Virtuoso, connecting applications in guest con-

tainers is simply a matter of mapping the respective guest

Unix socket into the container. After this any container guest

application can interact with Virtuoso as a native application

with the same performance.

5.3 Virtuoso with Virtual Machines
Initialization is more complex for virtual machines, as Unix

sockets and file descriptors are by definition local to the host.

Virtuoso instead integrates with the hypervisor to directly

map shared memory regions via a dummy PCI device. In the

VM, a Virtuoso guest agent implements a user space driver

for this dummy device and translates the interface into a

compatible Unix socket and shared memory file descriptors,

avoiding the need for applications to distinguish between

native, container, and VM operation. No modifications are

done to the guest operating system.

We utilize QEMU [45] with KVM, along with its Inter-

VM Shared Memory Device (IVSHM) [24], to implement the

hypervisor component of the Virtuoso integration. IVSHM

allows an external application to send a shared memory file

descriptor and eventfds for bi-directional interrupts to QEMU

that are then exposed as a PCI devicewith thememory region

as a directly memory mapped BAR. For ease of integration,

we implement this as a separate host proxy process that

connects to QEMU and Virtuoso.

In the guest we implement a Virtuoso guest agent, that

leverages the vfio-pci [53] kernel module to implement a user

space driver for the dummy PCI device. vfio-pci provides a

file descriptor that the application can mmap for access to

the BAR, along with eventfds for interrupts. The guest agent

creates a listening unix socket, and during the handshake

passes file descriptors directly to applications. This results

in a directly shared memory region between Virtuoso on the

host, and applications in the guest VM. As a result, fast-path

interactions with Virtuoso incur no additional overheads

compared to containers or native applications.

5.4 OvS Slow-path
We use OvS for virtualization management, to identify tun-

nelling information, and to determine the destination VM for

a flow. To that end, we modify OvS to exchange packets and

control information with Virtuoso. In OvS we implement cus-

tom transmit and receive netdev-provider ports. The receive

port polls Virtuoso for new packets and passes them to OvS.

OvS then performs internal matching based on the packet

metadata and directs it to a transmit netdev-provider port.

The transmit port holds tunnelling information for a packet

and establishes a message queue with Virtuoso to dispatch

this information. This message queue exchanges inner and

outer IP addresses for encapsulated packets, tunnel IDs from

GRE headers, and the appropriate ID for the destination VM.

6 Evaluation
In this section we evaluate how well Virtuoso addresses the

goals outlined in §2. To that end, our evaluation answers the

following questions:

• Does sharing the stack improve resource efficiency? (§6.1)

• Can fine-grained scheduling and resource accounting en-

sure isolation of tenants despite sharing resources? (§6.2)

• How close can optimized one-shot virtualization perfor-

mance get to native un-virtualized stacks? (§6.3)

• Does Virtuoso scale to serve many guests? (§6.4)

• Does Virtuoso improve VMperformance in oversubscribed

machines? (§6.5)

Testbed. We configure two identical machines as client

and server. They are directly connectedwith a pair of 100 Gbps

Mellanox ConnectX-5 Ethernet adapters. Both machines

have two Intel Xeon Gold 6152 processors at 2.1 GHz, each

with 22 cores for a total of 44 cores and 187GB of RAM per

machine. We run Linux kernel 5.15 with Debian 11.

Baselines. We compare Virtuoso against a number of

baseline configurations. For these we use two existing net-

work stacks, the default in-kernel Linux network stack, and

the optimized TAS TCP stack. Depending on the configu-

ration, we run these bare metal, or in QEMU/kvm virtual

machines with virtio-net vNICs connected to OvS.We config-

ure OvS with the DPDK backend and use vhost-user between

QEMU and OvS to get the best baseline performance. For

containers, we directly mount the respective Unix socket

into the containers for Virtuoso.

Focus on VMs. For most of our evaluation we focus on

Virtuoso with virtual machine guests, rather than container.

The dominating fast-path interaction performance is identi-

cal between Virtuoso VM guests and container guests, while

some slow-path interactions in the VM case are more expen-

sive than for containers (§6.3). At the same time we found

Virtuoso to provide higher relative benefits when comparing

to existing container stacks than compared with VM stacks.

Thus, Virtuoso with VMs provides a conservative evaluation

and performance comparison.

9

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

1 2 3 4

0

5

10

15

Virtuoso

OvS-TAS

T
p
u
t
[
m
R
p
s
/
c
o
r
e
]

Number of VMs

Figure 6. Virtuoso exhibits higher resource efficiency in per-

core aggregate VM throughput with bursty guests.

6.1 Sharing the Stack Improves Efficiency
We begin by measuring resource efficiency in bursty guest

workloads. For this we provision four guest VMs with echo

servers responding to RPCs. Clients generate bursty high-

low traffic, separately saturating each guest during peaks.

We then vary the degree of overlap, i.e. how many of the

guests burst concurrently, from one to a maximum of four

VMs.

As a baseline, we use separate TAS network stacks in

each guest connected to OvS on the host (OvS-TAS). For

the baseline we provision each guest with five cores, and

configure the TAS instances to use one fast-path core. For

Virtuoso we instead provision each guest with four cores,

and assign three fast-path cores to Virtuoso.

Figure 6 shows the per-core aggregate RPC throughput

across all guests during bursty periods. We obtained through-

put numbers by dividing the aggregate throughput by the

number of fast-path cores used by Virtuoso and the baseline.

Virtuoso achieves 82% higher per-core throughput when four

VMs are bursting. Our results show sharing the stack allows

Virtuoso to pool resources and thereby significantly improve

overall system efficiency.

6.2 Fine-grained Scheduling Isolates VMs
Next, we evaluate Virtuoso ability to isolate guests despite

sharing a network stack and underlying resources. To that

end, we evaluate two main performance metrics, latency and

throughput, for a "victim" guest while a separate aggressor

guest attempts to introduce performance interference.

We evaluate two different forms of interference, by sepa-

rately varying the number of aggressor connections and the

size of the aggressor messages. For the former the aggressor

uses a fixed message size of 64 bytes, and for the latter a fixed

number of 500 connections. The victim uses one connection

with 64 B messages for the latency measurements, and 500

connections with 64 B messages for the throughput measure-

ment. The victim uses a single core VM, while we provision

the aggressor VM with a core for every 500 connections.

Both victim and aggressor use the RPC echo server.

We compare this workload across different system config-

urations. Virtuoso with two fast-path cores, OvS-TAS with

V
i
c
t
i
m

G
u
e
s
t
P
e
r
f
o
r
m
a
n
c
e

9
9
p
L
a
t
e
n
c
y
[
u
s
]

1

10

100

1000

10000

100000

0.5 1 1.5 2 2.5

T
p
u
t
[
m
R
p
s
]

Aggressor K Flows

64 256 512 1024

0

0.5

1

1.5

2

2.5Virtuoso

OvS-TAS

TAS

OvS-Linux

Aggressor Msg Size [Bytes]

Figure 7. Victim guests using Virtuoso achieve tail latency

on par with siloed OvS-TAS and higher throughput, while

aggressor guest induces interference.

one additional fast-path core per guest VM for the TAS in-

stance, the guest Linux stack with OvS with no additional

guest cores. Finally, we also compare to native TAS by run-

ning victim and aggressor as separate processes on the host

connecting to the same TAS instance with two fast-path

cores. We use the timely [37] congestion control algorithm

in Virtuoso, OvS-TAS, and TAS. In all cases VMs, processes,

and network stacks are pinned to dedicated cores and Virtu-

oso equally divides resources for each guest by setting the

same value of𝑤𝑔 for all guests.

Figure 7 shows the results. At a high level, the results

confirm that Virtuoso’s fine-grained isolation retains tail

latencies below siloed OvS-TAS, while improving victim

throughput. TAS without isolation increases tail-latency sig-

nificantly as the aggressor’s message size increases. TAS

incurs tail latencies above Virtuoso and OvS-TAS because

of the lack of isolation mechanisms based on resource us-

age. For example, at 2500 aggressor connections Virtuoso

achieves a 99p latency of 60 𝜇s, OvS-TAS’s 98 𝜇s,and TAS’s

276,709 𝜇s. The benefits of fine-grained scheduling also hold

when comparing median latencies of the baselines. The Vir-

tuoso victim achieves 40 𝜇s 50p latency when the aggressor

VM sends 1024 B messages, while the TAS and OvS-TAS

clients achieve 1461 𝜇s and 45 𝜇s 50p latencies.

We also measure similar results with the victim’s through-

put. TAS sees a decrease in throughput as the aggressor VM

increases the number of connections or message size. With

Virtuoso, the victim maintains similar throughput as the ag-

gressor attempts to acquire more resources. For 2500 aggres-

sor connections, Virtuoso achieves 34% higher throughput

than OvS-TAS.

6.3 One-shot Processing Reduces Overhead
Virtualization overhead. First, we seek to measure and

break down the overheads of adding network virtualization

features to the network stack. For this, we start with the

10

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

TAS Scheduling VM GRE

Cycles/RPC 436 446 458 465

Overhead - + 2.3% + 5.0% + 6.7%

Table 1. Request processing times for different Virtuoso

features relative to the native baseline (TAS).

0

0.2

0.4

0.6

0.8

L
o
n
g
c
o
n
n TAS

Virtuoso

OvS-TAS

OvS-Linux

Linux

C
D
F

1 10 100 1000

0

0.2

0.4

0.6

0.8

1
m
s
g
/
c
o
n
n

C
D
F

Latency [µs]

Figure 8. RPC latency distribution across different network

stacks. For long-lived connections Virtuoso adds minimal

overhead relative to TAS, while tail latency for short-lived

connections, the Virtuoso worst-case, remains competitive.

TAS fast-path as the baseline and profile the number of pro-

cessor cycles required to process an RPC request including

sending the response. The application workload saturates a

single Virtuoso core with 64 B RPCs. We then successively

add Virtuoso features, starting with scheduling, then VM

integration, and finally GRE tunneling.

Table 1 shows the results. Fine grained scheduling and re-

source accounting adds around 10 cycles or 2.3% to each RPC.

Enabling VM integration adds 12 cycles, and finally GRE tun-

neling adds another 7 cycles per RPC. In total, the additional

functionality in Virtuoso only adds a total of 133 cycles or

6.7% of overhead. We also separately measured the over-

head of network virtualization on throughput. Enabling GRE

tunneling on OvS-TAS decreased throughput by 12%, while

running Virtuoso with GRE tunneling only adds an overhead

of 6%. We conclude that one-shot processing is effective for

avoiding expensive overhead for significant additional net-

work virtualization functionality.

Latency. These minimal overheads translate to minimal

latency increase for virtualized guests in Virtuoso compared

to TAS. We measure the small 64 B RPC latency, both for

long-lived connections and short-lived connections that only

carry one RPC before closing and re-opening, also including

latency for establishment and tear-down. We record latency

distributions for all our system configurations and report

the results in Figure 8.

With long connections Virtuoso achieves median latencies

of 5 𝜇s compared to 4 𝜇s with bare-metal TAS, and 8 𝜇s 99p

0 200 400 600 800 1000

0

5

10

15

TAS

Con-TAS

Con-Virtuoso

VM-Virtuoso

OvS-TAS

Linux

T
p
u
t
[
m
R
p
s
]

Flow Length [Requests]

0 200 400 600 800 1000

0

10

20

30

G
o
o
d
p
u
t
[
G
b
p
s
]

Message Size [Bytes]

Figure 9. Virtuoso achieves throughput similar to un-

virtualized TASwith diverse connection lengths andmessage

sizes, surpassing other virtualized stacks.

latency compared to 6 𝜇s for TAS. OvS-TAS only achieves

median latencies of 12 𝜇s and a 99p latency of 19 𝜇s, both

about a factor of two higher than Virtuoso. Native Linux and

Linux VMs with OvS are both significantly worse, although

interestingly we found that the DPDK drivers in OvS seem to

reduce overheads compared to the native in-kernel drivers,

thereby surprisingly lowering the latency.

Short-lived connections are Virtuoso’ Achilles heel, as

one-shot connection state management optimizes for fast

access to established state at the cost of overhead for adding

and removing connections. The extreme case of connections

that send only one RPC before being torn down again, fac-

toring in complete time for establishment and tear-down,

probes this. For average latency Virtuoso is slower than TAS

without OvS, at 36 𝜇s compared to 18 𝜇s and similar to OvS-

TAS’ 32 𝜇s. In the tail Virtuoso shows 99p latencies of 52 𝜇s

compared to TAS’ 26 𝜇s and OvS-TAS 50 𝜇. We suspect that

this is due to inefficiencies in the Virtuoso connector in OvS

that may be less optimized than the vhost-user port we use

for OvS-TAS. Linux is again far slower. We conclude Vir-

tuoso enables virtualized networking with minimal latency

overhead compared to unvirtualized stacks.

Throughput. One-shot virtualization processing also al-

lows Virtuoso to achieve high throughput, comparable to

bare metal performance. In Figure 9 we dedicate the same

number of cores to the networking stack in a client and

server machine running an RPC echo server. Server and

client applications run on 12 cores each, and we dedicate 10

cores to Virtuoso and TAS. We again measure throughput

for short and long-lived connections.

11

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

3 6 9 12 15 18

0

5

10

15

20
Virtuoso OvS-TAS OvS-Linux

T
p
u
t
[
m
R
p
s
]

Number of Guest VMs

Figure 10. Virtuoso significantly outperforms alternative

stacks even with many guests.

We first vary the number of messages per connection and

measure throughput. The more expensive Virtuoso slow-

path is apparent for short-lived connections, but as more

messages are sent per connection the gap between Virtuoso

and bare-metal solutions decreases. Virtuoso also achieves

throughput competitive with TAS for long-lived connections.

For 1024 B messages Virtuoso reaches throughput only 14%

lower than TAS, while OvS-TAS shows a performance drop of

56%. Baselines with containers show that there is little to no

overhead between running Virtuoso in VMs (VM-Virtuoso)

as opposed to containers (Con-Virtuoso). But the container

baselines perform slightly worse than Virtuoso at 1024 B,

possibly because of inneficiencies in the container runtime.

Linux is again not competitive. We conclude one-shot pro-

cessing also enables high-throughput virtualized network

communication.

6.4 Virtuoso Scales to Many Guests
We evaluate guest scalability in Virtuoso. For each run we

provision two cores for each guest VM and measure the ag-

gregate throughput as the number of guests increases. Each

VM runs an RPC echo server loaded 500 connections send-

ing 64 B messages. We use four fast-path cores for Virtuoso

with one polling core in OvS. In the OvS-TAS and OvS-Linux

baselines we assign six polling cores to OvS.

Figure 10 shows the results. Virtuoso sees a increase in

throughput up to 12 guest VMs. At 15 million requests per

second, the four fast-path cores in Virtuoso are saturated and

performance stabilizes, higher throughput can be achieved

by allocating more fast-path cores. At 18 VMs, Virtuoso

achieves 156% higher throughput than OvS-TAS and 490%

higher throughput than OvS-Linux. OvS-TAS needs at least

one core for the slow-path and one core for the fast-path, so

in this setup TAS cores inside a VM compete with the appli-

cation for resources, resulting in a smaller performance gain

when compared to OvS-Linux. We conclude that Virtuoso

outperforms alternatives at scale and scales to the number

of guests on typical cloud servers.

0

250

500

750
Virtuoso OvS-Linux

T
p
u
t
[
k
R
p
s
]

1 2 3 4 5 6

0

0.01
0.02
0.03
0.04
0.05

V
M

E
x
i
t
s
/
R
e
q

VMs/Core

Figure 11. Virtuoso has fewer VM exits per request main-

tining performance when cores are oversubscribed.

6.5 Shared Stack Reduces VM Exits
We evaluate Virtuoso’s performance under oversubscribed

conditions, where multiple VMs share the same core. In

this test, one core is dedicated to Virtuoso’s fast path, while

OvS-Linux assigns a thread to the DPDK polling thread. We

increase the number of VMs running an echo server on

one core and measure aggregate throughput and VM exits.

Figure 11 shows that for OvS-Linux, more VMs lead to more

VM exits and degraded throughput. In contrast, Viridian’s

shared stack architecture reduces VM exits by minimizing

the times we pass control to the guest OS, maintaining stable

throughput as more VMs are added.

7 Related Work
Performance isolation. Caladan[14] improves CPU uti-

lization and provides isolation by dynamically adjusting core

allocations. Andromeda[4] enforces performance isolation

with per-VM coprocessor threads which are accounted to the

VM, but the paper does not evaluate its claim of performance

isolation. Both use coarse-grain allocations incurring context

switching and reallocation overheads. Virtuoso instead im-

plements fine-grain performance isolation at the packet level

without context-switches. PicNIC[30] maintains predictable

SLOs for network virtualization with receiver-driven conges-

tion control between virtual switches and back-pressure to

guests. PicNIC is still a siloed architecture with per-guest net-

work stacks, and only ensures isolation for the virtual switch.

Virtuoso instead enables sharing and isolating the full net-

work stack. Virtuoso also implements receiver limits through

the existing TCP flow control. FairNIC[18] isolates tenants

sharing a SmartNIC by statically partitioning the SmartNIC

cores. This coarse-grain static partitioning achieves lower

resource utilization compared to Virtuoso fine-grained shar-

ing. Junction[13] relies on a centralized scheduler to make

core allocation decisions and maintain low tail-latency be-

tween instances, but Junction only provides a kernel bypass

solution to containers and not VMs and relies on user inter

processor interrupts (UIPIs) [22] to implement fine-grained

timeslicing, which is not widely available in hardware.

12

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

Shared host-level network stack. NetKernel [39] also
proposes extracting the network stack from VMs and sharing

it between multiple VMs. Unlike Virtuoso, NetKernel keeps

virtual switching and network virtualization separate from

the rest of the network stack. NetKernel does not evaluate

𝜇s-scale latency isolation. Snap [35] implements a shared

network stack as a user space service for multi-tenant envi-

ronments. Snap is internally structured as communicating

engines running as separate threads, with coarse-grained iso-

lation by dedicating engines to clients, either dynamically or

statically allocated to cores. Virtuoso per-packet scheduling

instead improves resource efficiency through sharing and

efficient batching, by processing packets from multiple VMs

together, without compromising isolation. Unfortunately nei-

ther NetKernel nor Snap are available for direct comparison.

Container overlay networks. Overlay networks [6, 12,

55] implement container network virtualization. Slim [60]

avoids the typical per-packet virtualization for containers

and does not require packet transformations in the data plane.

However, it does so by avoiding protocol-level network vir-

tualization and instead directly sends packets on the physical

network only translating address info in socket calls, and

thus only works for networks that exclusively use Slim. Slim

also does not provide additional mechanisms over Linux for

performance isolation and lacks support for VMs.

8 Conclusion
With Virtuoso we have shown that network processing for

virtual machines and container environments can be im-

plemented efficiently in software. By sharing resources and

using fine-grained scheduling for isolation Virtuoso achieves

resource utilization far above other alternatives. And one-

shot network virtualization enables implementation of the

necessary virtualization functionality with minimal over-

head over optimized bare metal stacks. We expect that our

techniques can generalize to other protocols and implemen-

tation on other architectures, such as SoC-SmartNICs.

Acknowledgments
We thank Florian Bauckholt and Mehrshad Lotfi for proof-

of-concept prototypes of the Virtuoso VM and OpenVSwitch

integration respectively. We also thank Rajath Shashidhara

for his contributions in the long running discussions over

the course of this project.

References
[1] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud

Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam

Kumar, Sylvia Ratnasamy, David Culler, and Amin Vahdat. Under-

standing host interconnect congestion. In 21st ACM Workshop on Hot
Topics in Networks, HotNets, 2022.

[2] Amazon Web Services. AWS Nitro system. https://aws.amazon.com/
ec2/nitro/.

[3] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operat-

ing system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
2014.

[4] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshu-

man Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno,

Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson,

Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil

Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata,

Yossi Richter, Uday Naik, and Amin Vahdat. Andromeda: Performance,

isolation, and velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2018.

[5] Jeffrey Dean and Luiz André Barroso. The tail at scale. ACM Transac-
tions on Computer Systems, 56(2):74–80, February 2013.

[6] Docker overlay. https://docs.docker.com/network/.
[7] G. Dommety. Key and sequence number extensions to GRE, September

2000. RFC 2890.

[8] Peter Druschel, Larry Peterson, and Bruce Davie. Experiences with

a high-speed network adaptor: A software perspective. In 1995 ACM
SIGCOMM Conference on Data Communication, SIGCOMM, 1995.

[9] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-

stein. NICA: An infrastructure for inline acceleration of network

applications. In 2019 USENIX Annual Technical Conference, ATC, 2019.
[10] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic routing

encapsulation (GRE), March 2000. RFC 2794.

[11] Daniel Firestone. VFP: A virtual switch platform for host SDN in the

public cloud. In 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI, 2017.

[12] Flannel. https://github.com/flannel-io/flannel.
[13] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukshe,

ÍñigoGoiri, Sameh Elnikety, Rodrigo Fonseca, andAdamBelay. Making

kernel bypass practical for the cloud with junction. In 21th USENIX
Symposium on Networked Systems Design and Implementation, NSDI,
2024.

[14] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.

Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI, 2020.

[15] P. Garg and Y. Wang. Nvgre: Network virtualization using generic

routing encapsulation, September 2015. RFC 7637.

[16] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles

Muller. BMC: Accelerating memcached using safe in-kernel caching

and pre-stack processing. In 18th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, 2021.

[17] Rahul Ghosh and Vijay K. Naik. Biting off safely more than you can

chew: Predictive analytics for resource over-commit in iaas cloud. In

Fifth IEEE International Conference on Cloud Computing, CLOUD, 2012.
[18] Stewart Grant, Anil Yelam,Maxwell Bland, and Alex C. Snoeren. Smart-

nic performance isolation with fairnic: Programmable networking for

the cloud. In 2020 ACM SIGCOMM Conference on Data Communication,
SIGCOMM, 2020.

[19] J. Gross, I. Ganga, and T. Sridhar. Geneve: Generic network virtualiza-

tion encapsulation, November 2020. RFC 8926.

[20] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos

Kozyrakis. A case against (most) context switches. In 18th Workshop
on Hot Topics in Operating Systems, HOTOS, 2021.

[21] Intel Corporation. PCI-SIG SR-IOV primer: An introduction to SR-IOV

technology. Intel application note, January 2011. Revision 2.5.

[22] Intel Corporation. Intel 64 and IA-32 architectures software devel-

oper’s manual. https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html, July 2024.

[23] Intel data plane development kit. http://www.dpdk.org/.

13

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://docs.docker.com/network/
https://github.com/flannel-io/flannel
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.dpdk.org/

, , Matheus Stolet, Liam Arzola, Simon Peter, and Antoine Kaufmann.

[24] Inter-VM shared memory device – QEMU documentation. https://
www.qemu.org/docs/master/system/devices/ivshmem.html.

[25] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,

Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: A highly

scalable user-level TCP stack for multicore systems. In 11th USENIX
Symposium on Networked Systems Design and Implementation, NSDI,
2014.

[26] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G. Andersen.

Raising the bar for using GPUs in software packet processing. In 12th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2015.

[27] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,

Arvind Krishnamurthy, and Thomas Anderson. TAS: TCP acceleration

as an OS service. In 14th ACM European Conference on Computer
Systems, EuroSys, 2019.

[28] Hsiao keng Jerry Chu. Zero-copy TCP in Solaris. In 1996 USENIX
Annual Technical Conference, ATC, 1996.

[29] M. Kerrisk. veth - virtual ethernet device. https://man7.org/linux/man-
pages/man4/veth.4.html, February 2023.

[30] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong

Wang, Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble,

Nate Foster, and Amin Vahdat. PicNIC: predictable virtualized NIC. In

2019 ACM SIGCOMM Conference on Data Communication, SIGCOMM,

2019.

[31] I.M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,

R. Fairbairns, and E. Hyden. The design and implementation of an

operating system to support distributed multimedia applications. IEEE
Journal on Selected Areas in Communications, 14(7):1280–1297, 1996.

[32] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. Socks-

direct: datacenter sockets can be fast and compatible. In 2019 ACM
SIGCOMM Conference on Data Communication, SIGCOMM, 2019.

[33] Yan Luo, Eric Murray, and Timothy L Ficarra. Accelerated virtual

switching with programmable nics for scalable data center networking.

In 2nd ACM SIGCOMMWorkshop on Virtualized Infrastructure Systems
and Architectures, VISA, 2010.

[34] Maziar Manesh, Katerina Argyraki, Mihai Dobrescu, Norbert Egi,

Kevin Fall, Gianluca Iannaccone, Eddie Kohler, and Sylvia Ratnasamy.

Evaluating the suitability of server network cards for software routers.

In 3rd ACM Workshop on Programmable Routers for Extensible Services
of Tomorrow, PRESTO, 2010.

[35] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,

Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,

William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,

Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,

Xi Wang, and Amin Vahdat. Snap: a microkernel approach to host

networking. In 27th ACM Symposium on Operating Systems Principles,
SOSP, 2019.

[36] Microsoft Corporation. Project Catapult. https://www.microsoft.com/
en-us/research/project/project-catapult/.

[37] RadhikaMittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-

all, and David Zats. TIMELY: RTT-based congestion control for the

datacenter. In 2015 ACM SIGCOMM Conference on Data Communica-
tion, SIGCOMM, 2015.

[38] David Mosberger and Larry L. Peterson. Making paths explicit in

the Scout operating system. In 2nd USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 1996.

[39] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong, Tao

Wang, Dongsu Han, and Keith Winstein. NetKernel: Making network

stack part of the virtualized infrastructure. In 2020 USENIX Annual
Technical Conference, ATC, 2020.

[40] NVIDIA. ConnectX-7 400G Adapters. https://nvdam.widen.net/s/
csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-

2544471, December 2022.

[41] NVIDIA. NVIDIA Bluefield-3 DPU. https://resources.nvidia.com/en-
us-accelerated-networking-resource-library/datasheet-nvidia-
bluefield?lx=LbHvpR&topic=networking-cloud, March 2023.

[42] Open vswitch. https://www.openvswitch.org/.
[43] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The

operating system is the control plane. ACM Transactions on Computer
Systems, 33(4):11:1–11:30, November 2015.

[44] Boris Pismenny, AdamMorrison, and Dan Tsafrir. ShRing: Networking

with shared receive rings. In 17th USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2023.

[45] QEMU – the FAST! processor emulator. https://www.qemu.org/.
[46] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian chin Wang, and K.K. Ra-

makrishnan. SPRIGHT: extracting the server from serverless com-

puting! high-performance ebpf-based event-driven, shared-memory

processing. In 2022 ACM SIGCOMM Conference on Data Communica-
tion, SIGCOMM, 2022.

[47] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C.

Hoe, Aurojit Panda, Justine Sherry, and Ren Wang. Enso: A stream-

ing interface for NIC-Application communication. In 17th USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
2023.

[48] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter.

FlexTOE: Flexible TCP offload with Fine-Grained parallelism. In 19th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2022.

[49] M. Shreedhar and George Varghese. Efficient fair queueing using

deficit round robin. In 1995 ACM SIGCOMM Conference on Data Com-
munication, SIGCOMM, 1995.

[50] M. Mahalingam Storvisor, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,

T. Sridhar, M. Bursell, and C. Wright. Virtual extensible local area net-

work (vxlan): A framework for overlaying virtualized layer 2 networks

over layer 3 networks, August 2014.

[51] David L. Tennenhouse. Layered multiplexing considered harmful. In

Protocols for High Speed Networks I, PfHSN, 1989.
[52] M. Tsirkin and C. Huck. Virtual i/o device (VIRTIO) version 1.2. https:

//docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html, July 2022.

[53] VFIO - "virtual function I/O". https://docs.kernel.org/driver-api/vfio.
html.

[54] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a user-level

network interface for parallel and distributed computing. In 15th ACM
Symposium on Operating Systems Principles, SOSP, 1995.

[55] Weave. https://www.weave.works/.
[56] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The re-

source pooling principle. SIGCOMM Computer Communication Review,
38(5):47–52, September 2008.

[57] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob

Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-

feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,

Piali Choudhury, and Anirudh Badam. The Demikernel datapath OS

architecture for microsecond-scale datacenter systems. In 28th ACM
Symposium on Operating Systems Principles, SOSP, 2021.

[58] Niu Zhixiong, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong,

Guo Chen, and KeithWinstein. Network stack as a service in the cloud.

In 16th ACM Workshop on Hot Topics in Networks, HotNets, 2017.
[59] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu.

Electrode: Accelerating distributed protocols with ebpf. In 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI,
2023.

[60] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu,

Matthew Rockett, Arvind Krishnamurthy, and Thomas Anderson. Slim:

OS kernel support for a Low-Overhead container overlay network. In

14

https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://www.openvswitch.org/
https://www.qemu.org/
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://www.weave.works/

Virtuoso: High Resource Utilization and 𝜇s-scale Performance Isolation , ,

16th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI, 2019.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Network Virtualization Concepts
	2.2 Status Quo: Layered Silos
	2.3 Prior Work

	3 Virtuoso Approach
	3.1 Design Principles

	4 Detailed Virtuoso Design
	4.1 One-shot, Single-layer Transport
	4.2 CPU Resource Accounting
	4.3 Central Resource Allocation
	4.4 Fine-grained Scheduling
	4.5 Secure Shared Stack

	5 Implementation
	5.1 Support for Multiple Guests
	5.2 Virtuoso with Containers
	5.3 Virtuoso with Virtual Machines
	5.4 OvS Slow-path

	6 Evaluation
	6.1 Sharing the Stack Improves Efficiency
	6.2 Fine-grained Scheduling Isolates VMs
	6.3 One-shot Processing Reduces Overhead
	6.4 Virtuoso Scales to Many Guests
	6.5 Shared Stack Reduces VM Exits

	7 Related Work
	8 Conclusion
	References

